Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Inorg Chem ; 62(27): 10559-10571, 2023 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-37377337

RESUMO

The synthesis and structures of nitrile complexes of V(N[tBu]Ar)3, 2 (Ar = 3,5-Me2C6H3), are described. Thermochemical and kinetic data for their formation were determined by variable temperature Fourier transform infrared (FTIR), calorimetry, and stopped-flow techniques. The extent of back-bonding from metal to coordinated nitrile indicates that electron donation from the metal to the nitrile plays a less prominent role for 2 than for the related complex Mo(N[tBu]Ar)3, 1. Kinetic studies reveal similar rate constants for nitrile binding to 2, but the activation parameters depend critically on the nature of R in RCN. Activation enthalpies range from 2.9 to 7.2 kcal·mol-1, and activation entropies from -9 to -28 cal·mol-1·K-1 in an opposing manner. Density functional theory (DFT) calculations provide a plausible explanation supporting the formation of a π-stacking interaction between a pendant arene of the metal anilide of 2 and the arene substituent on the incoming nitrile in favorable cases. Data for ligand binding to 1 do not exhibit this range of activation parameters and are clustered in a small area centered at ΔH‡ = 5.0 kcal·mol-1 and ΔS‡ = -26 cal·mol-1·K-1. Computational studies are in agreement with the experimental data and indicate a stronger dependence on electronic factors associated with the change in spin state upon ligand binding to 1.

2.
Inorg Chem ; 60(18): 13821-13832, 2021 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-34291939

RESUMO

Nonheme iron enzymes often utilize a high-valent iron(IV) oxo species for the biosynthesis of natural products, but their high reactivity often precludes structural and functional studies of these complexes. In this work, a combined experimental and computational study is presented on a biomimetic nonheme iron(IV) oxo complex bearing an aminopyridine macrocyclic ligand and its reactivity toward olefin epoxidation upon changes in the identity and coordination ability of the axial ligand. Herein, we show a dramatic effect of the pH on the oxygen-atom-transfer (OAT) reaction with substrates. In particular, these changes have occurred because of protonation of the axial-bound pendant amine group, where its coordination to iron is replaced by a solvent molecule or anionic ligand. This axial ligand effect influences the catalysis, and we observe enhanced cyclooctene epoxidation yields and turnover numbers in the presence of the unbound protonated pendant amine group. Density functional theory studies were performed to support the experiments and highlight that replacement of the pendant amine with a neutral or anionic ligand dramatically lowers the rate-determining barriers of cyclooctene epoxidation. The computational work further establishes that the change in OAT is due to electrostatic interactions of the pendant amine cation that favorably affect the barrier heights.


Assuntos
Compostos de Ferro/química , Oxigênio/química , Teoria da Densidade Funcional , Concentração de Íons de Hidrogênio , Ligantes , Estrutura Molecular
3.
J Am Chem Soc ; 140(1): 264-276, 2018 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-29172489

RESUMO

Reaction of [Pd(IPr)2] (IPr = 1,3-bis(2,6-diisopropylphenyl)imidazol-2-ylidene) and O2 leads to the surprising discovery that at low temperature the initial reaction product is a highly labile peroxide complex cis-[Pd(IPr)2(η2-O2)]. At temperatures ≳ -40 °C, cis-[Pd(IPr)2(η2-O2)] adds a second O2 to form trans-[Pd(IPr)2(η1-O2)2]. Squid magnetometry and EPR studies yield data that are consistent with a singlet diradical ground state with a thermally accessible triplet state for this unique bis-superoxide complex. In addition to reaction with O2, cis-[Pd(IPr)2(η2-O2)] reacts at low temperature with H2O in methanol/ether solution to form trans-[Pd(IPr)2(OH)(OOH)]. The crystal structure of trans-[Pd(IPr)2(OOH)(OH)] is reported. Neither reaction with O2 nor reaction with H2O occurs under comparable conditions for cis-[Pd(IMes)2(η2-O2)] (IMes = 1,3-bis(2,4,6-trimethylphenyl)imidazol-2-ylidene). The increased reactivity of cis-[Pd(IPr)2(η2-O2)] is attributed to the enthalpy of binding of O2 to [Pd(IPr)2] (-14.5 ± 1.0 kcal/mol) that is approximately one-half that of [Pd(IMes)2] (-27.9 ± 1.5 kcal/mol). Computational studies identify the cause as interligand repulsion forcing a wider C-Pd-C angle and tilting of the NHC plane in cis-[Pd(IPr)2(η2-O2)]. Arene-arene interactions are more favorable and serve to further stabilize cis-[Pd(IMes)2(η2-O2)]. Inclusion of dispersion effects in DFT calculations leads to improved agreement between experimental and computational enthalpies of O2 binding. A complete reaction diagram is constructed for formation of trans-[Pd(IPr)2(η1-O2)2] and leads to the conclusion that kinetic factors inhibit formation of trans-[Pd(IMes)2(η1-O2)2] at the low temperatures at which it is thermodynamically favored. Failure to detect the predicted T-shaped intermediate trans-[Pd(NHC)2(η1-O2)] for either NHC = IMes or IPr is attributed to dynamic effects. A partial potential energy diagram for initial binding of O2 is constructed. A range of low-energy pathways at different angles of approach are present and blur the distinction between pure "side-on" or "end-on" trajectories for oxygen binding.

4.
Inorg Chem ; 53(20): 11185-96, 2014 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-25280113

RESUMO

The enthalpy of oxygen atom transfer (OAT) to V[(Me3SiNCH2CH2)3N], 1, forming OV[(Me3SiNCH2CH2)3N], 1-O, and the enthalpies of sulfur atom transfer (SAT) to 1 and V(N[t-Bu]Ar)3, 2 (Ar = 3,5-C6H3Me2), forming the corresponding sulfides SV[(Me3SiNCH2CH2)3N], 1-S, and SV(N[t-Bu]Ar)3, 2-S, have been measured by solution calorimetry in toluene solution using dbabhNO (dbabhNO = 7-nitroso-2,3:5,6-dibenzo-7-azabicyclo[2.2.1]hepta-2,5-diene) and Ph3SbS as chalcogen atom transfer reagents. The V-O BDE in 1-O is 6.3 ± 3.2 kcal·mol(-1) lower than the previously reported value for 2-O and the V-S BDE in 1-S is 3.3 ± 3.1 kcal·mol(-1) lower than that in 2-S. These differences are attributed primarily to a weakening of the V-Naxial bond present in complexes of 1 upon oxidation. The rate of reaction of 1 with dbabhNO has been studied by low temperature stopped-flow kinetics. Rate constants for OAT are over 20 times greater than those reported for 2. Adamantyl isonitrile (AdNC) binds rapidly and quantitatively to both 1 and 2 forming high spin adducts of V(III). The enthalpies of ligand addition to 1 and 2 in toluene solution are -19.9 ± 0.6 and -17.1 ± 0.7 kcal·mol(-1), respectively. The more exothermic ligand addition to 1 as compared to 2 is opposite to what was observed for OAT and SAT. This is attributed to less weakening of the V-Naxial bond in ligand binding as opposed to chalcogen atom transfer and is in keeping with structural data and computations. The structures of 1, 1-O, 1-S, 1-CNAd, and 2-CNAd have been determined by X-ray crystallography and are reported.


Assuntos
Calcogênios/química , Complexos de Coordenação/química , Nitrilas/química , Vanádio/química , Sítios de Ligação , Complexos de Coordenação/síntese química , Cinética , Modelos Moleculares , Estrutura Molecular , Teoria Quântica , Termodinâmica
5.
Chem Commun (Camb) ; 50(6): 645-8, 2014 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-24292104

RESUMO

Mechanistic studies of H2O2 activation by complexes related to [(BPMEN)Fe(II)(CH3CN)2](2+) with electron-rich pyridines revealed that a new intermediate formed in the presence of acetic acid with a 465 nm visible band can be associated with an unusual g = 2.7 EPR signal. We postulate that this chromophore is an acylperoxoiron(III) intermediate.


Assuntos
Materiais Biomiméticos/química , Complexos de Coordenação/química , Peróxido de Hidrogênio/química , Ferro/química , Acilação , Espectroscopia de Ressonância de Spin Eletrônica , Heme/química , Medições Luminescentes , Modelos Biológicos
6.
J Am Chem Soc ; 135(30): 11357-72, 2013 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-23805977

RESUMO

Thermodynamic, kinetic, and computational studies are reported for oxygen atom transfer (OAT) to the complex V(N[t-Bu]Ar)3 (Ar = 3,5-C6H3Me2, 1) from compounds containing N-O bonds with a range of BDEs spanning nearly 100 kcal mol(-1): PhNO (108) > SIPr/MesCNO (75) > PyO (63) > IPr/N2O (62) > MesCNO (53) > N2O (40) > dbabhNO (10) (Mes = mesityl; SIPr = 1,3-bis(diisopropyl)phenylimidazolin-2-ylidene; Py = pyridine; IPr = 1,3-bis(diisopropyl)phenylimidazol-2-ylidene; dbabh = 2,3:5,6-dibenzo-7-azabicyclo[2.2.1]hepta-2,5-diene). Stopped flow kinetic studies of the OAT reactions show a range of kinetic behavior influenced by both the mode and strength of coordination of the O donor and its ease of atom transfer. Four categories of kinetic behavior are observed depending upon the magnitudes of the rate constants involved: (I) dinuclear OAT following an overall third order rate law (N2O); (II) formation of stable oxidant-bound complexes followed by OAT in a separate step (PyO and PhNO); (III) transient formation and decay of metastable oxidant-bound intermediates on the same time scale as OAT (SIPr/MesCNO and IPr/N2O); (IV) steady-state kinetics in which no detectable intermediates are observed (dbabhNO and MesCNO). Thermochemical studies of OAT to 1 show that the V-O bond in O≡V(N[t-Bu]Ar)3 is strong (BDE = 154 ± 3 kcal mol(-1)) compared with all the N-O bonds cleaved. In contrast, measurement of the N-O bond in dbabhNO show it to be especially weak (BDE = 10 ± 3 kcal mol(-1)) and that dissociation of dbabhNO to anthracene, N2, and a (3)O atom is thermodynamically favorable at room temperature. Comparison of the OAT of adducts of N2O and MesCNO to the bulky complex 1 show a faster rate than in the case of free N2O or MesCNO despite increased steric hindrance of the adducts.

7.
J Am Chem Soc ; 134(44): 18249-52, 2012 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-23082724

RESUMO

Treatment of V(N[(t)Bu]Ar)(3) (1) (Ar = 3,5-Me(2)C(6)H(3)) with O(2) was shown by stopped-flow kinetic studies to result in the rapid formation of (η(1)-O(2))V(N[(t)Bu]Ar)(3) (2) (ΔH(‡) = 3.3 ± 0.2 kcal/mol and ΔS(‡) = -22 ± 1 cal mol(-1) K(-1)), which subsequently isomerizes to (η(2)-O(2))V(N[(t)Bu]Ar)(3) (3) (ΔH(‡) = 10.3 ± 0.9 kcal/mol and ΔS(‡) = -6 ± 4 cal mol(-1) K(-1)). The enthalpy of binding of O(2) to form 3 is -75.0 ± 2.0 kcal/mol, as measured by solution calorimetry. The reaction of 3 and 1 to form 2 equiv of O≡V(N[(t)Bu]Ar)(3) (4) occurs by initial isomerization of 3 to 2. The results of computational studies of this rearrangement (ΔH = 4.2 kcal/mol; ΔH(‡) = 16 kcal/mol) are in accord with experimental data (ΔH = 4 ± 3 kcal/mol; ΔH(‡) = 14 ± 3 kcal/mol). With the aim of suppressing the formation of 4, the reaction of O(2) with 1 in the presence of (t)BuCN was studied. At -45 °C, the principal products of this reaction are 3 and (t)BuC(═O)N≡V(N[(t)Bu]Ar)(3) (5), in which the bound nitrile has been oxidized. Crystal structures of 3 and 5 are reported.

8.
Inorg Chem ; 51(9): 5006-21, 2012 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-22534174

RESUMO

An iron(II) complex with a pyridine-containing 14-membered macrocyclic (PyMAC) ligand L1 (L1 = 2,7,12-trimethyl-3,7,11,17-tetra-azabicyclo[11.3.1]heptadeca-1(17),13,15-triene), 1, was prepared and characterized. Complex 1 contains low-spin iron(II) in a pseudo-octahedral geometry as determined by X-ray crystallography. Magnetic susceptibility measurements (298 K, Evans method) and Mössbauer spectroscopy (90 K, δ = 0.50(2) mm/s, ΔE(Q) = 0.78(2) mm/s) confirmed that the low-spin configuration of Fe(II) is retained in liquid and frozen acetonitrile solutions. Cyclic voltammetry revealed a reversible one-electron oxidation/reduction of the iron center in 1, with E(1/2)(Fe(III)/Fe(II)) = 0.49 V vs Fc(+)/Fc, a value very similar to the half-wave potentials of related macrocyclic complexes. Complex 1 catalyzed the epoxidation of cyclooctene and other olefins with H(2)O(2). Low-temperature stopped-flow kinetic studies demonstrated the formation of an iron(IV)-oxo intermediate in the reaction of 1 with H(2)O(2) and concomitant partial ligand oxidation. A soluble iodine(V) oxidant, isopropyl 2-iodoxybenzoate, was found to be an excellent oxygen atom donor for generating Fe(IV)-oxo intermediates for additional spectroscopic (UV-vis in CH(3)CN: λ(max) = 705 nm, ε ≈ 240 M(-1) cm(-1); Mössbauer: δ = 0.03(2) mm/s, ΔE(Q) = 2.00(2) mm/s) and kinetic studies. The electrophilic character of the (L1)Fe(IV)═O intermediate was established in rapid (k(2) = 26.5 M(-1) s(-1) for oxidation of PPh(3) at 0 °C), associative (ΔH(‡) = 53 kJ/mol, ΔS(‡) = -25 J/K mol) oxidation of substituted triarylphosphines (electron-donating substituents increased the reaction rate, with a negative value of Hammet's parameter ρ = -1.05). Similar double-mixing kinetic experiments demonstrated somewhat slower (k(2) = 0.17 M(-1) s(-1) at 0 °C), clean, second-order oxidation of cyclooctene into epoxide with preformed (L1)Fe(IV)═O that could be generated from (L1)Fe(II) and H(2)O(2) or isopropyl 2-iodoxybenzoate. Independently determined rates of ferryl(IV) formation and its subsequent reaction with cyclooctene confirmed that the Fe(IV)-oxo species, (L1)Fe(IV)═O, is a kinetically competent intermediate for cyclooctene epoxidation with H(2)O(2) at room temperature. Partial ligand oxidation of (L1)Fe(IV)═O occurs over time in oxidative media, reducing the oxidizing ability of the ferryl species; the macrocyclic nature of the ligand is retained, resulting in ferryl(IV) complexes with Schiff base PyMACs. NH-groups of the PyMAC ligand assist the oxygen atom transfer from ferryl(IV) intermediates to olefin substrates.


Assuntos
Compostos Aza/química , Ferro/química , Compostos Macrocíclicos/química , Compostos Organometálicos/química , Piridinas/química , Alcenos/química , Benzoatos/química , Catálise , Peróxido de Hidrogênio/química , Compostos Organometálicos/síntese química , Oxirredução , Oxigênio/química , Fosfinas/química
9.
Chem Commun (Camb) ; 48(5): 687-9, 2012 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-22134336

RESUMO

A new aminopyridine ligand derived from bipiperidine (the product of full reduction of bipyridine, bipy) coordinates to iron(II) in a cis-α fashion, yielding a new selective catalyst for olefin epoxidation with H(2)O(2) under limiting substrate conditions.


Assuntos
2,2'-Dipiridil/química , Alcenos/química , Química Orgânica/métodos , Compostos de Epóxi/química , Peróxido de Hidrogênio/química , Ferro/química , Ácido Acético/química , Catálise , Cristalografia por Raios X , Espectroscopia de Ressonância de Spin Eletrônica , Ligantes , Estrutura Molecular , Oxirredução , Estereoisomerismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...